Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.30.564680

ABSTRACT

COVID-associated coagulopathy seemly plays a key role in post-acute sequelae of SARS-CoV-2 infection. However, the underlying pathophysiological mechanisms are poorly understood, largely due to the lack of suitable animal models that recapitulate key clinical and pathological symptoms. Here, we fully characterized AC70 line of human ACE2 transgenic (AC70 hACE2 Tg) mice for SARS-CoV-2 infection. We noted that this model is highly permissive to SARS-CoV-2 with values of 50% lethal dose and infectious dose as [~] 3 and [~] 0.5 TCID50 of SARS-CoV-2, respectively. Mice infected with 105 TCID50 of SARS-CoV-2 rapidly succumbed to infection with 100% mortality within 5 days. Lung and brain were the prime tissues harboring high viral titers, accompanied by histopathology. However, viral RNA and many inflammatory mediators could be readily detectable in other organs, suggesting the nature of a systemic infection. Lethal challenge of AC70 hACE2 Tg mice caused acute onset of leukopenia, lymphopenia, along with an increased neutrophil-to-lymphocyte ratio. Importantly, infected animals recapitulated key features of COVID-19-associated coagulopathy, including significantly elevated levels of D-dimer, t-PA, PAI-1, and circulating NETs, along with activated platelet/endothelium marker. Immunohistochemical staining with anti-PF4 antibody revealed profound platelet aggregates especially within blocked veins of the lungs. ANXA2 is known to interact with S100A10 to form heterotetrametric complexes, serving as coreceptors for t-PA to regulate membrane fibrinolysis. Thus, our results revealing elevated IgG type anti-ANXA2 antibody production, downregulated de novo ANXA2/S100A10 synthesis, and reduced AnxA2/S100A10 association in infected mice support an important role of this protein in the pathogenesis of acute COVID-19. In summary, we showed that acute SARS-CoV-2 infection of AC70 hACE2 Tg mice triggered a hypercoagulable state coexisting with ill-regulated fibrinolysis, accompanied by dysregulation of ANXA2 system, which might serve as druggable targets for development of antithrombotic and/or anti-fibrinolytic agents to attenuate pathogenesis of COVID-19. Author SummaryAccumulating evidence strongly suggests that COVID-associated coagulopathy characterized by dysregulation of the coagulation cascade, fibrinolysis system and pulmonary microvascular immune-thrombosis during different stages of SARS-CoV-2 infection may have a "yet-to-be fully defined" impact on the development of post-acute sequela of COVID-19. Herein we initially reported a comprehensively characterized AC70 hACE2 Tg mouse model for SARS-CoV-2 infection and disease. We next demonstrated the subsequent onset of imbalanced coagulation and fibrinolysis pathways in infected Tg mice, focusing on dysregulated formation of ANXA2/S100A10 complexes, key coreceptors for t-PA that regulates membrane fibrinolysis, in which elevated production of autoantibodies against ANXA2 induced by SARS-CoV-2 might play an intriguing role. Taken together, we demonstrated that AC70 hACE2 Tg mice lethally challenged with SARS-CoV-2 recapitulated several features of COVID-associated coagulopathy observed in patients and highlighted the potential role of ANXA2 in this phenomenon. Thus, ANXA2 might serve as a potentially novel druggable target to attenuate COVID-19-associated thrombotic events.


Subject(s)
COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.19.549739

ABSTRACT

Inhibitors of the SARS-CoV-2 main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function on these mutants are thus urgently needed. We hypothesized that the covalent HCV protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more tightly than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to NTV. A crucial feature of ML2006a4 is a novel derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Finally, ML2006a4 is less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory drug design can preemptively address potential resistance mechanisms.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.23.509206

ABSTRACT

Clinically licensed COVID-19 vaccines ameliorate viral infection by inducing vaccinee production of neutralizing antibodies that bind to the SARS-CoV-2 Spike protein to inhibit viral cellular entry (Walsh et al., 2020; Baden et al., 2021), however the clinical effectiveness of these vaccines is transitory as viral variants arise that escape antibody neutralization (Tregoning et al., 2021; Willett et al., 2022). Vaccines that solely rely upon a T cell response to combat viral infection could be transformational because they can be based on highly conserved short peptide epitopes that hold the potential for pan-variant immunity, but a T cell vaccine has not been shown to be sufficient for effective antiviral prophylaxis. Here we show that a mRNA-LNP vaccine based on highly conserved short peptide epitopes activates a CD8+ and CD4+ T cell response that prevents mortality in HLA-A*02:01 transgenic mice infected with the SARS-CoV-2 Beta variant of concern (B.1.351). The T cell vaccine produced 5.5 times more CD8+ T cell infiltration of the lungs in response to infection when compared to the Pfizer-BioNTech Comirnaty(R) vaccine. The T cell vaccine did not produce neutralizing antibodies, and thus our results demonstrate that SARS-CoV-2 viral infection can be controlled by a T cell response alone. Our results suggest that further study is merited for pan-variant T cell vaccines, and that T cell vaccines may be relevant for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1690354.v1

ABSTRACT

Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2−/−) mice with a mouse-adapted CoV-2 strain and found that Neil2−/− mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5’-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.


Subject(s)
COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.28.489809

ABSTRACT

The authorized mRNA- and adenovirus-based SARS-CoV-2 vaccines are intramuscularly injected and effective in preventing COVID-19, but do not induce efficient mucosal immunity, or prevent viral transmission. We developed a bacteriophage T4-based, multicomponent, needle and adjuvant-free, mucosal vaccine by engineering spike trimers on capsid exterior and nucleocapsid protein in the interior. Intranasal administration of T4-COVID vaccine induced higher virus neutralization antibody titers against multiple variants, balanced Th1/Th2 antibody and cytokine responses, stronger CD4+ and CD8+ T cell immunity, and higher secretory IgA titers in sera and bronchoalveolar lavage with no effect on the gut microbiota, compared to vaccination of mice intramuscularly. The vaccine is stable at ambient temperature, induces apparent sterilizing immunity, and provides complete protection against original SARS-CoV-2 strain and its Delta variant with minimal lung histopathology. This mucosal vaccine is an excellent candidate for boosting immunity of immunized and/or as a second-generation vaccine for the unimmunized population.


Subject(s)
COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.25.482049

ABSTRACT

Numerous mutations in the spike protein of SARS-CoV-2 B.1.1.529 Omicron variant pose a crisis for antibody-based immunotherapies. The efficacy of emergency use authorized (EUA) antibodies that developed in early SARS-CoV-2 pandemic seems to be in flounder. In this work, we examined the Omicron variant neutralization using an early B cell antibody repertoire as well as several EUA antibodies in pseudovirus and authentic virus systems. More than half of the antibodies in the repertoire that showed good activity against WA1/2020 previously had completely lost neutralizing activity against Omicron, while antibody 8G3 from our early B cell repertoire displayed non-regressive activity. EUA antibodies Etesevimab, Casirivimab, Imdevimab and Bamlanivimab neutralized authentic WA1/2020 virus with low half maximal inhibitory concentration (IC50) values, but were entirely desensitized by Omicron. Only Sotrovimab targeting the non-ACE2 overlap epitope showed activity but with a dramatic decrease. Interestingly, antibody 8G3 efficiently neutralized Omicron in pseudovirus and authentic virus systems. 8G3 also showed excellent activity against other variants of concern (VOCs). Collectively, our results suggest that neutralizing antibodies with breadth remains broad neutralizing activity in tackling SARS-CoV-2 infection despite the universal evasion from EUA antibodies by Omicron variant.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.17.386532

ABSTRACT

Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a novel series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking out viral receptor ACE2. The lead drug possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD with a Kd of 15.7picomolar (~3000 times more tightly than ACE2 did) and inhibited SARS-CoV-2 infection with an ND50 of 0.16microgram/milliliter (~6000 times more potently than ACE2 did). Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy in hamsters subjected to SARS-CoV-2 infection. Unlike conventional antibody drugs, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented a greater than 10-day in vivo half-life efficacy and high tissue bioavailability. Nanosota-1C-Fc is a potentially effective and realistic solution to the COVID-19 pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.23.347534

ABSTRACT

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 M inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of [≤] 100 M. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2 , differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL